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A finite difference analysis of surface acoustic wave propagation and scattering in piezo-
electric crystals is presented. Numerical solutions of coupled electromechanical equations
are obtained from an association of a recursive technique with linear iterative methods.
Finite difference approximations are presented for various surface perturbations, and
numerical simulations are achieved for some electrical discontinuities on the surface of a
LiNbO, crystal.

1. INTRODUCTION

The propagation of acoustic surface waves on solids is a physical phenomenon
widely used nowadays in the realization of simple and compact surface acoustic wave
(SAW) devices [1] which perform various signal processing functions in the mega-
hertz to gigahertz range of frequencies. Most of these SAW devices are built on
piezoelectric crystals allowing very simple techniques for the realization of electro-
mechanical transducers.

However, while the SAW propagation on piezoelectric crystals is well known for
the simplest geometries such as the infinite free surface, the infinite metallized surface,
or the infinite layered media [2], accurate analytical solutions are not available
when the geometry becomes more complex. This case occurs, for instance, when
metallic strips are layered on the surface. Every discontinuity between a free surface
region and a metallized one scatters the acoustic wave. This scattering phenomenon,
which is undesirable when it distubs the component function, may on the other hand
be useful in some other devices, such as reflectors, resonators, etc. In any event,
a better knowledge of scattering phenomena is necessary, both to avoid parasitic
reflections from transducers and to design optimal geometries of reflectors.
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The problem of SAW propagation and scattering is governed by partial differential
equations with boundary conditions; thus finite difference techniques are particularly
suited to finding solutions of such a problem. These techniques have been successfully
used by several authors [3-11], who have determined the surface wave scattering from
various geometrical obstacles but only on isotropic solids.

In this paper, we propose a finite difference analysis of surface wave propagation
and scattering on high coupling piezoelectric substrates. This method is more com-
plete than the earlier ones, because it takes into account anisotropy, piezoelectricity,
and electrical boundary conditions. In order to solve the coupled equations in piezo-
electric materials, the association of two different techniques using finite difference
approximations is required:

(a) The initial value problem for the mechanical displacements [12, 13] is
solved by recursive techniques.

(b) At every step of the recursive process, Dirichlet’s problem of the electrical
potential is solved by linear iterative techniques [13, 14].

This method has been used for the study of electrical discontinuities, i.e., the effect
of short-circuiting some regions of the crystal surface and results concerning both
surface wave bebavior and electrical behavior have been determined. Some of these
results have been presented already [15-17].

2. STATEMENT OF THE PROBLEM
Figure 1 shows a longitudinal section of a part of a SAW device. The surface wave,

which propagates along the direction x; , meets finite width metallic layers S, , S, ,....
These metallic layers are assumed to be massless and perfectly conducting.
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Fic. 1. Longitudinal section of a part of an SAW device. The incident surface wave, propagating
in the direction x, , meets metallic layers S, , S. , S5 .

piezoelectric
crystal

This approximation is valid when thin layers of a light metal are layered on the
surface of a high coupling piezoelectric crystal: When the layer thickness is small
enough with regard to surface wave wavelength, the mechanical effects (mass loading)
may be neglected with regard to short-circuit effects [18, 19] (for example, A/ electrodes
on LiNbO; , and frequencies up to about 100 MHz).

The electromechanical system is governed by the following partial differential
equations [2, 20, 21].
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(@) In the piezoelectric crystal.

—Equation of motion (hyperbolic)

Py 2%y, a2V .. _
P th_ - cijkl ax,; axl - ek’i]' axk axi ’ i, ], k’ I — 19 2, 3 (I)
—Equation of piezoelectric coupling (elliptic)
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Gt BV 0o, iki=123 @)
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where the u; are the mechanical displacement components, measured along the
Cartesian axes to which the stiffness tensor c;;;, , the piezoelectric tensor e,;;, and
the dielectric tensor e, are referred, V is the electrical potential, and p is the density
of the crystal.

(b) In the vacuum. Laplace’s équation (elliptic)
VY = 0. 3

(c) Boundary conditions. The boundary conditions take into account the
local conditions on the surface (i.e., free surface or short circuited surface). One
can consider two kinds of conditions:

—Mechanical boundary conditions: The surface must be traction-free e.c.

u oV
To; = Cojmt 5 + €rgyz— = 0 for x; =0, “)
axl axk

where T; are elements of the stress tensor. Since the metal strips have been assumed
massless (very thin plating), this condition must be imposed even for a metalized
surface.

—Electrical boundary conditions: For a free surface, the electrical potential 14
and the normal component D, of electrical displacement must be continuous across
the charge-free interface. Furthermore, the potential must vanish when x; - — o0

V(xs = 0t) = V(xs = 07), 5)
Dy(xs = 0%) = Dy(x3 = 07), (6)
with
D; = —eogxl—/— for x; <0, )
. 3
Dy Ot oV for x, = 0. (%)

= €gx1 ——axl. — €Egx 3—‘xk
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For a short-circuited surface, the electrical boundary condition must be

% =0, for xy3 =0. ¢))
Finite difference techniques are particularly suited to solving such problems, but they
require important computing resources. In this first step, we have achieved a finite
difference analysis of the behavior of an incident straight-crested Rayleigh wave in
the particular case of Z propagation on Y-cut LiNbO; crystal.

This particular cut on LiNbO; has been chosen both for its high piezoelectric
coupling constant {22-24] and for the characteristics of the Z-propagating Rayleigh
wave, which has only two displacement components. Nevertheless, this analysis is
suitable for other Y-cut Z-propagating crystals of class 3m, like LiTaO, , for example.

3. FINITE DIFFERENCE ANALYSIS

The invariance of solutions along x, for staight-crested waves allows us to consider
only two spatial variables, x, and x;. Z-propagating Rayleigh waves on a Y-cut
LiNbO; crystal have no transverse displacement component u, . Furthermore, some
elements of the stiffness, piezoelectric, and dielectric tensors are null [25, 26]. Thus,
the problem is reduced to three variables (x; , x5, and time) and solutions will be
searched only for the displacements u, and u; and for the potential V.

3.1. Discretization

A closed study domain ABCD is chosen (Fig. 2) into which both time and space
variables are discretized by superimposing a square grid on the domain ABCD,
with a mesh spacing 4. Each node located at x, = ih and x; = jh is characterized
by the set of integer indices (i, /) where i and j are increasing, respectively, along x,
and x; . The domain has M nodes along x, and N nodes along x; [AB = (M — 1)k
and AD = (N — 1) h]. The time increment is denoted by /, and the time 7 = #/
is characterized by the integer index ¢.

A X B

X3¥S s .
/7 /////////////////////77757

h
-
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FiG. 2. The spaceis discretized into the study domain ABCD. (The mesh spacing dx, = 4x, = h.)
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3.2, Determination of Mechanical Displacements

(a) The centered finite difference approximation of the equation of motion (1)
can be written

UG, jt+ 1) =2U00Gj¢t)—UGjt—1)
+ [NTG + 1,4, 1) — 20G, j, t) + UG — 1,4, )]
+ [BIUG,j + 1,¢) — 2UG, j, t) + UG, j — 1, 1)]
+ NG+ Lj+ 1,0+ 06— 1,j—1,2)

where

ul(isjs t) PR
UG,j, 1) = [ua(i,j, ,)] ad  UGAL0=[B000], a1

V(,j, t) b S

_Pren 0 ey
[A] = FEE 0 Css 0 ]’ (13)
12 ress cas €

Bl — —— 55 35 35 , 14
L2] ph? [cas C33 €33 (19

— __12__ 0 (€15 + €35) 0
€1 = 4ph? [(013 + ¢35) 2cg5 (&3 + eas)]’ (13

where ¢;; and e;; are components of the matrix form of the stiffness and piezoelectric
tensors (obtained by the Voigt notation) [26].

The two explicit difference equations obtained from (10) allow the determination
of the displacement of the node (i, j) at time (¢ 4 1) as a linear combination of dis-
placements and potentials of node (i, j) and its eight neighbors at the two previous
time levels (¢) and (¢ — 1) (Fig. 3). However, these equations cannot be used to deter-
mine the displacements of nodes lying either on the artificial boundaries ABCD
or on the free surface SS’, because these nodes do not have eight neighbors. The diffi-
culty is eliminated on the artificial boundaries ABCD by imposing suitable values to
corresponding nodes, but the physical boundary SS” requires a particular treatment.

e
time
axe
Fic. 3. Displacements of node (i, j) at time 7 + 1 is a linear combination of displacements and
potentials of node (7, /) and its eight neighbors at the two preceding times # and # — 1.
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(b) Boundary conditions. The nodes lying along the crystal surface SS" must
satisfy the boundary conditions (4) and (5)—(9). In order to compute the mechanical
displacements of surface nodes with the explicit finite difference equation (10),
fictitious values of displacements and potentials are determined on the line located
just above the surface (Fig. 4, line j~1). These fictitious values of potentials and
displacements are such that the boundary conditions are satisfied on the surface line (f)
[3-11]. (It should be noted that two values of potentials are avilable for nodes of line
Jj — 1: The actual value of potential in the vacuum and the fictitious one required by
the boundary-condition expressions.)

I ( t
VS SO S W SR SR S g

FiG. 4. On the nodes O of line (j — 1) above the surface, fictitious values of displacements and
potentials are determined according to the boundary conditions.

From finite difference approximations of the boundary conditions, the fictitious
electromechanical vector U,(i, j — 1, t) for the node located at (i, j — 1) is determined.

[0 4
Usi,j — 1, 1) = [M]™? (B) (16)
Y
with
w(i,j— 1,1
Udi,j—1,1) = [us(i, j—1, t)] (fictitious values), an
V(la] - 19 t)

o = Csslg(Gj+ 1, 0) +us(i + 1,4, 8) — usi — 1, , 1)]

+ cystts(i, j + 1, 8) + eV (i, j+ 1, 8), (18)
B = el + 1,7, 1) — w(i — 1, ), 1)]

+ easln(j 4+ 1, 8) + ug(i + 1,7, 1) — us(i — 1, 1)]

+ Cagtts(j+ 1, 1) + eg[VE+ 1,4, t) — V(i — 1, /, )] + essV(G, j + 1, 2). (19)

Matrix [M] and y depend on electrical boundary conditions; for a free surface,

Cs5 Css €35
[M] = |cys c35 ess]’ (20)

€35 €33 —€g3
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Y= e%[ul(i:j + 1: t) + ua(i + lyj’ t) - ua(i - I’j’ t)] + easua(i:j + 1: t)
- €33V(l,] + 1’ t) - EO[I/(l + laj, t) + V(l - l,j: t) + 2V(l’.] - 1’ t)
— 4V, j, )], o2

and for a metallized surface,

Cs5 C35 €35
M] = [Cas C33 933], (22)
0O 0 1
Y = 2V(l,]3 t) - V(la] + 1, t)' (23)

(c) Stability conditions. By the application of a standard von Neumann
analysis analogous to the one presented by Alterman and Loewenthal [4] we get the
necessary stability condition

hy\? a4+ c+ [(c+ b2+ 442

(T) > [ x ) ] , (24)

with
2 2
a=cy+ cg3+ 2055 b=cy—ocn; C=e33+(eu+e%) ;
€1 T €g3
d =k + (11 + eg5)[2eg¢35 + (1 — Cas)(ens + €35)]
% € 1 €33 ’

which yields to

(h/l) > 8546 m/sec for YZ LiNnO,, 25)

(h/1) > 7332 m/sec for YZ LiTaO, .

Usually, we have chosen A/l about 20 9 higher than the minimal value of (25). How-
ever, this von Neumann condition applies only for nodes which are not in the vicinity
of the surface and Ilan and Loewenthal [27] have shown that the introduction of
surface boundary conditions may give rise to instabilities for some range of elastic
parameters, even when the previous condition is fulfilled.

Nevertheless, the recursive process, which has been checked together with the
method accuracy, is stable for YZ LiNbQO; and for YZ LiTaO; .

3.3. Determination of Electrical Potentials

The recursive determination of mechanical displacements requires the knowledge
of the electrical potentials at every discrete time. Then, before every incrementation
of time, it is necessary to compute these potentials at every node of the study domain.
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The potential is governed by an elliptical differential equation, and the finite
difference approximation to this piezoelectric coupling equation may be written:

.. 1 , , . .
V(I’.]’ t) = m{ell[V(l + 1’]’ t) + V(l - 1’.]’ t)]

+enV@j+ 1,0+ V(@ j—1,10)]

—[DNUG+ L,j0) —2U0Gjt) + UG —1,j,1]
— [ENUGj+ L,6) = 2U0Gj ) + UGj— 1, 1)
—[FIUG+ Lj+ LD+ UG- 1j— 10

- U,(l + 15.]_' 1, t) - U’(l - ls.]+ 1’ t)]}9 (26)
D] = (e, 0 [E] = (ewrem)s  [Fl=[0, 287 %] (@)

Here, the mechanical displacements, already determined at time ¢, are considered
as data, and with respect to potential, this approximation is a “four nodes” type of
approximation.

(a) Dirichlet’s problem. In order to determine the electrical potentials, the
problem is modified into a Dirichlet problem by assuming that a zero equipotential
is located at a distance 4 above the surface (Fig. 2). An analytical computation
analogous to the one used by Campbell and Jones [2] shows that the change in SAW
propagation characteristics is very small when d > 0.1A (where X is the wavelength
of surface wave), and the initial hypothesis of totally free surface is not altered by the
presence of the equipotential. In practice, we have chosen d = A/2. Suitable values
of potentials are imposed on nodes lying on the artificial boundaries ABCD of the
study domain.

In the vacuum above the crystal, the finite difference approximation of Laplace’s
equation leads to the classical “four nodes” formula.

(b) Interface conditions. Because the derivatives of potential are not continuous
across the interface, the centered finite difference approximation (26) and (28) cannot
be used for surface nodes. A particular approximation is necessary. This approxi-
mation takes into account the piezoelectric coupling equation, Laplace’s equation,
and mechanical and electrical boundary conditions, and it uses noncentered approxi-
mations. For a free surface, it may be written:

1
e T e T2y P2les? D + V@] + (en + V(D) + V)]

— eulia(D) + (1) — 2(0)] — 2eli() — w(O)]
— Degafue(2) ~ O] + 22 [uy(1) + 14(6) — us(3) — (5)]

V(0) =

+ 7 ) — w @, 29
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with
7 = e35(€33Ca5 — C33€35) 1 €33(€a5Cas — C55€33)s (30)

_ 2
4 = cyye55 — C35

and where the position of a node is characterized by a number, according to the
diagram of Fig. 5.

=1~

j+1—e° @

FiG. 5. Characterization of nodes for Eq. (29).

(c) Linear iterative techniques [13, 14]. By writing the appropriate finite
difference approximation (26) or (28) or (30) at every node (i, j) of the study domain,
a linear system is obtained:

[41iv] = [B],
where the searched potentials at time ¢, are the elements of column matrix [V]

V,=V(,jt) withi=2(N—1),j=2M—1), k=1,(M—2) x (N—2).
(32)

This system is similar to the ones encountered in the finite difference analysis of electro-
static and electromagnetic {28-30] phenomena, though it is more complicated because
of coupling between mechanical displacements and potentials. The potentials are then

[V] = [4]*[B]. (33

The matrix 4 can be inverted by linear iterative techniques. Exact values of potentials
are imposed on the botindaries ABCD of the study domain, whereas arbitrary ones
V? are alloted inside the domain. The appropriate finite difference approximation
is applied successively at every node of the study domain, and a new column matrix
V' is obtained. A new iteration is carried out again and yields ¥®. The process
converges if V™ — V-1 a5 p —» 0,

We have used such techniques in order to determine the potentials at every step
of the recursive process, although in order to reduce the number of iterations an over-
relaxation method has been chosen [13, 14, 30-32]. With the overrelaxation method,
the finite difference approximations (26), (28), and (30) are modified by introducing
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a relaxation factor w. An example of such a modified approximation is given for the
Laplace equation:

Vo) = 3 WG+ LA+ V= Lj, 0+ VG + 1,0+ Vi j— 1L1)]
— (w0 — D)V, Jj, ). (34)

For a study domain of size M = 240 and N = 80, the optimal value of w is about
1.77 and the potentials are determined with a precision of about 19 after 18 to 20
iterations. The knowledge of the electrical potentials then allows the incrementation
of time and a further computation of mechanical displacements. The linear iterative
techniques are used to determine the potentials at every discrete time .

4. APPLICATION OF THE NUMERICAL METHOD

-

4.1. Initialization

The numerical simulation of SAW propagation and . scattering is initialized
by assuming that a pure Rayleigh wave propagates along an unperturbed surface
(Fig. 6). At time levels t = 0 and 7 = 1, analytically computed values of potentials
and displacements due to the pure Rayleigh wave are alloted to nodes of the study
domain. At time level ¢+ = 3, the recursive process is started. Mechanical displace-
ments are computed from the numerical values of potentials and displacements
at the two previous times and then the potentials are determined.

A B
T
PURE
RAYLEIGH
WAVE
a o c
__A B __ _
PR S EEEUUNS S
0] D c

FiG. 6. (a) Initialization: At times # = 0 and r = 1, it is assumed that a pure Rayleigh wave
propagates along an unperturbed surface. (b) After the simulation process has been started, the
conditions of the surface perturbation are imposed.
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In order to maintain the Rayleigh wave propagation, analytical values in agree-
ment with the initial wave are imposed at every discrete time to nodes lying on the
boundaries ABCD of the domain. Thus, the column 4D acts as a source, whereas
the column BC acts as an “adapted load.” When the lower line DC is far enough
from the surface, its displacements and potentials can be set to zero.

Boundary conditions corresponding to surface perturbations (metallic strips)
are imposed on the surface after the simulation process has been started. Surface
wave scattering from discontinuities is numerically simulated, but the recursive
process must be stopped just before the scattered waves reach the limits of the domain
and consequently the study domain must be chosen long enough.

4.2. Metallic Strips on Surface

When metallic strips are layered on the surface, initial solutions are not known
and thus the recursive process above is initialized by assuming the surface to be unper-
turbed at times ¢+ = 0 and ¢ = 1. When the numerical simulations have been started,
local appropriate boundary conditions are imposed to surface nodes, i.e., (16),
(20) and (21) for a free surface, and (16), (22), and (23) for a metallized surface.
However, when the surface is partly metallized, it is necessary to take into account
the two electrical conditions which may be imposed onto the strip in order to compute
electrical potentials.

(@) The strip potential is imposed. If the strip potential denoted by V' is imposed
(generally V', = 0), the value V, is alloted to surface nodes located at the strip position
and this value is maintained unchanged during each linear iterative process.

(b) The strip potential is not fixed. This case occurs when the strip is not con-
nected externally (Fig. 7a), or when it is connected to an external electrical circuit,
for instance, a resistor between the strip and ground (Fig. 7b). (When R = 0, it
becomes case (a).) The potential attained by the strip is then a “floating” potential
due to the effects of both the surface wave propagation and the electrical circuit
(i.e., in the example of Fig. 7b, the latter is given by Ohm’s law across the resistor).

Because the piezoelectric crystal is also a dielectric [33], the total electrical charge
per unit length of strip must remain unchanged in the case of Fig. 7a, whereas the
electrical charge variations are governed by Ohm’s law in the case of Fig. 7b. Then,

a) ——— | vorrin v /s BN —_

b) —_——— —_—

Fic. 7. (a) Unconnected strip. (b) Strip connected to an external electrical circuit. (Here, a
resistor between strip and ground.)




164 CAMBIAGGIO AND CUOZZO

at every discrete time, the strip potential V, is a solution of both the Dirichlet problem
and Ohm’s law

_ _r90
v, = ~RZ%, (33)

where dQ/dr denotes the increase of electrical charge Q per unit length of strip during
the time increment dr.
The finite difference approximation of Ohm’s law may be written as

QU+ 1) = 01— 1) — 2 V), (36)

where the electrical charge Q(¢r + 1) at time ¢ 4 1 is expressed in terms of the strip
potential and charge at the two preceding times. (When the strip is insulated, this
condition becomes simpler, Q(¢) = 0, Vt.)

A particular finite difference approximation is used in order to determine the elec-
trical potential ¥, of such strips, i.e.,, an approximation based upon an application
of Gauss’ theorem around the strip. Figure 8 shows the grid near a strip. During the

T T TR
Lol Ll g
S SRR IR IR
trrrr A 0 0 000 drrterrr A
N
SRR
s —-o—--o---o-—-o---o——-o——-o——-o—--‘n,

Fic. 8. The grid near a strip. Gauss’ theorem across PQRS leads to a particular finite difference
approximation.

recursive process, the electrical charge per unit length of strip is determined and this
charge then acts as input data during the linear iterative resolution of the potentials.
Gauss’ theorem is applied to the boundary PQRS around the strip. Because of the
invariance of the solutions along the direction x, , Gauss’ theorem may be written

f D.dl = Q@), (37
PQORS

where D is the electrical displacement, and d1 a unit length vector normal to the line
PQORS.

The writing of a finite difference approximation to D at every node belonging to
the boundary PQRS yields a difference approximation of ¥V,

_ o) —¢q
Ve= (o + €9) Ny + (e + €11) ’ (38)
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where N, is the number of nodes of the strip and ¢ is a linear combination of potentials
and displacements of the nodes surrounding the strip (located on lines PQRS and
P'Q'R'S"). Thus, with the overrelaxation method, the potentials are determined
taking into account the electrical conditions.

4.3. Simulation of SAW Propogation and Scattering

As a first step, the whole numerical method has been tested for the simplest cases
such as the entirely free or the metallized surface. The comparison of numerical
results with analytical solutions, well known in these simple cases, has allowed us
to determined the precision of the method and, furthermore, to determine the optimal
values of the relaxation factor w.

Most of the numerical calculation has been carried out in a standard study domain
in which distances have been normalized with respect to the surface wavelength A.
The size of this standard domain is M = 240 and N = 80, with a space increment
A/20 and a time increment 1/60F, where F is the surface wave frequency. The domain
size is thus 122 long and 4A deep. The zero equipotential is located at A/2 above the
surface and the first obstacle is located at SA from the line source. The simulation
process is stopped after 200 to 260 increments of time, i.e., 3.3 to 4.3 periods. The
overrelaxation method requires about 18 iterations when w = 1.77. The comparison
of numerically computed values of u, , u;, and V with analytical solutions in the
particular case of a free surface leads to an evaluation of the method accuracy. The
relative errors on v, (Rayleigh wave velocity) and on amplitude of vibrations u, ,
u, , and V, after a 3.2 period simulation, are

dv, _ —8 x 1073, Auw —9.5 x 103,
v, U,

dus _5g w102, AV 11 x 10
Us v

It is seen that the numerical method presented here provides a simulation of SAW
propagation in ¥YZ LiNbO; with good accuracy. It has been used in order to determine
SAW behavior near various geometries of electrical discontinuities, each geometry
requiring a particular computer run. With the standard study domain size, each
computer run is achieved after 180 min CPU time with 600K memory size on an
IBM 360/65 computer.

Scattering properties of surface acoustic waves are deduced from amplitude
curves like the ones presented Figs. 9 and 10. The analysis of such curves leads to
reflection and transmission coefficients, whereas the evolution of electrical potentials
leads to the characterization of acoustoelectric conversion. Some results thus obtained
have been presented already, for example, SAW behavior on a free-metallized inter-
face [15, 16] and on one or two metallic strips [17, 34]. Complete results, concerning
both SAW scattering and acoustoelectric conversion, will be pubilshed elswhere and
compared to experiments.
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Fic. 9. Example of displacement amplitude curves into the study domain: Amplitude of w,
in terms of normalized position x,/A, x;/A. (U, denotes the amplitude of the component «, of the
incident wave, for x; = 0.)
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Fic. 10. Example of amplitude curves: Amplitude of u, in terms of normalized position x;/A,
X3/A.

5. CONCLUSION

A finite difference analysis of SAW propagation and scattering on a highly piezo-
electric YZ LiNbO, crystal has been presented. This analysis, which uses two different
techniques in order to solve the coupled electromechanical equation in piezoelectric
materials, is well suited to the simulation of the SAW behavior near surface pertur-
bations, and it may be considered as a useful analytic tool. It should be improved
further in order to be available for any crystal cut and any direction of propagation.
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